Pinned Posts
Độ hot của Langchain
Langchain là một framework vô cùng hot hit trong thời gian gần đây. Nó được sinh ra để tận dụng sức mạnh của các mô hình ngôn ngữ lớn LLM như ChatGPT, LLaMA... để tạo ra các ứng dụng trong thực tế. Dù mới được phát triển cách đây khoảng 6 tháng (10/2022) và vẫn được cập nhật liên tục hàng ngày nhưng trên Github Langchain đã nhận được những tương tác khủng với lượng star lê...
All posts
Introduction Image to Image translation là quá trình tạo ra phiên bản mới của một bức ảnh với một đặc trưng cụ thể. Ví dụ như chuyển từ ảnh grayscale sang ảnh màu, ảnh mặt người thật sang ảnh anime, tăng độ phân giải của ảnh
Để huấn luyện mô hình cho bài toán image to image translation theo hướng supervised learning, ta sẽ cần một lượng lớn các cặp ảnh input và label. Ví dụ như: ảnh màu và ả...
Abstract Hiện tại, các framework deep learning đã có rất nhiều thay đổi, Pytorch vươn lên trở thành framework chủ đạo trong giới academic, TensorFlow thì vẫn giữ vị trí số 1 ở thị trường industry. Keras từ vị trí 1 python library hỗ trợ cho các framework deep learning đã trở thành API chính được Google khuyến khích sử dụng trong TensorFlow 2.x. Các viết session ở các bản 1.x cũng không còn nữa,...
Abstract Chào các bạn, hôm nay chủ đề mình đưa ra khá là chung chung. Tuy nhiên, theo góc nhìn của một đứa cũng chậm chững bước chân vào lĩnh vực này thì mình thấy nội dung này khá cần thiết để giúp các bạn tiếp cận và hiểu hơn về Machine Learning cũng như workflow của Machine Learning
Bài viết này mình có công như là phiên dịch của Machine Learning Roadmap (2020), thêm vào đó là các nội dung ...
[IMG]
Giới thiệu qua mô hình Unet
Image segmentation (phân đoạn cho hình ảnh) là 1 bài toán trong lĩnh vực Computer Vision (thị giác máy tính). Đó là 1 bài toán nâng cao hơn Object Detection, không chỉ đi tìm "bounding box" bao quanh vật thể nữa, mà còn tìm 1 đường viền tốt hơn để bao sát vào vật thể. Lúc này, việc gán nhãn đã phải chi tiết tới từng pixel.
Trước kia, người ta thường dùng các phươn...
Gần đầy, các bài toán trong lĩnh vực NLP thường sử dụng một phương pháp "không cũ không mới" mang tên self-attention. Lý do chính là vì phương pháp này có thể giữ được các thông tin của ngữ cảnh (mặc dù độ dài của sequence đầu vào có thể rất lớn) mà vẫn cho phép tính toán song song (parallelization) - điểm mạnh của việc sử dụng GPU. Điển hình, ta có ví dụ về kiến trúc mạng Transformers, một kiế...
Abstract Trong quá trình xây dựng một mô hình Machine Learning, một phần không thể thiếu để xét xem mô hình có chất lượng tốt hay không chính là đánh giá mô hình. Đánh giá mô hình giúp chúng ta chọn lựa được các mô hình phù hợp với bài toán cụ thể. Để có thể áp dụng đúng thước đo đánh giá mô hình phù hợp, chúng ta cần hiểu bản chất, ý nghĩa cũng như các trường hợp sử dụng nó. Cùng phân tích và ...
Ngày nay bên cạnh nghiên cứu ra các mô hình học sâu chính xác hơn, nhanh hơn thì việc ứng dụng đưa các mô hình học sâu vào trong các sẩn phẩm cũng không kém phần quan trọng và gặp rất nhiều thách thức. Đặc biệt trong việc chuyển từ mô hình được viết bằng framework này sang framework khác vì mỗi thư viện có các hàm và kiểu dữ liệu khác nhau. Ví dụ khi nghiên cứu thử nghiệm mô hình mình thường sử...
Giới thiệu
Trong quá trình xây dựng một mô hình học máy, chắc hẳn các bạn đã gặp phải một số vấn đề như mô hình dự đoán có độ chính xác thấp dù đã dùng một kiến trúc phức tạp, hay lượng dữ liệu quá ít để có thể huấn luyện một mô hình hoàn chỉnh. Thông thường, một mô hình có kết quả dự báo kém là do một số nguyên nhân sau
- Dữ liệu nhỏ không đại diện: Bộ dữ liệu của chúng ta có kích thước quá ...
Chào các bạn, hôm nay tôi sẽ cùng các bạn tìm hiểu và sử dụng mô hình học máy hết sức phổ biến là Support Vector Machine để giải quyết bài toán phân loại các hạt thóc .
Trước khi đi chi tiết vào nội dung bài thì tôi đố các bạn phân biệt được 3 hạt thóc ở ảnh phía dưới đây thuộc những loại thóc nào
Vâng nếu bạn nào đoán đây là 3 loại thóc khác nhau thì sai rồi nhé . Đây...
"Thợ lặn" hơi lâu, sau sự kiện MayFest thì đến bây giờ cũng là 3 tháng rồi mình không viết thêm bài mới. Thế nên là, hôm nay mình lại ngoi lên, đầu tiên là để luyện lại văn viết một chút, tiếp theo cũng là muốn chia sẻ thêm với mọi người về một lớp bài toán khá hay ho mà mình cũng đang tìm hiểu gần đây: Video Understanding.
Đương nhiên, hay ho thì sẽ luôn đi kèm với nhiều thách thức, do đó, để...
Chào mọi người, trong quá trình viết về AdaBoost của, mình có tìm được 2 bài về Ensemble Learning Ensemble learning và các biến thể (P1) và Gradient Boosting - Tất tần tật về thuật toán mạnh mẽ nhất trong Machine Learning của các anh. Hai bài đã giải thích rất rõ để mọi người hiểu thế nào là mô hình học yếu, cách để kết h...
Các kiến thức trong bài viết hôm nay bao gồm:
- Core idea của bài toán Face Recognition
- FaceNet with Triplet Loss
- CosFace
- ArcFace
- Bài toán Face Recognition Chắc hẳn mọi người đều đã từng nghe đến bài toán Face Recognition. Face Recognition có thể nói bao gồm hai bài toán con:
- Face identification (nhận diện khuôn mặt): là bài toán one-to-many. Input là ảnh một khuôn mặt, và mô hình c...
Để một mô hình học máy có thể khái quát hóa tốt, người ta cần đảm bảo rằng các quyết định của nó được hỗ trợ bởi các mẫu có ý nghĩa trong dữ liệu đầu vào. Tuy nhiên, điều kiện tiên quyết là để mô hình có thể tự giải thích, ví dụ: bằng cách làm nổi bật các đặc trưng đầu vào mà nó sử dụng để hỗ trợ dự đoán của nó. Layer-Wise Relevance Propagation hay LRP là một kỹ thuật mang lại khả năng giải thí...
Mở bài
Vấn đề về adversarial attacks chắc hẳn đã không còn xa lạ sau khi đọc bài kia của mình rồi nhỉ Đó là khi một ảnh có thể bị thay đổi đôi chút sao cho người nhìn không nhận ra khác nhau, nhưng mô hình thì lại đưa ra dự đoán sai.
Lại là cái ảnh thần thánh của FGSM
Vậy ngoài các cách phòng thủ trong bài trên ra còn những phương pháp nào nữa? Một cách chúng ta có thể làm là x...
Giới thiệu Các ứng dụng về GAN ở domain về ảnh thì vô cùng nhiều nhưng trong domain tín hiệu time-series thì chưa có nhiều. Với ý tưởng là các tín hiệu phức tạp thì theo fourier có thể phân tách được nhiều tín hiệu dạng sin. Nên khi mô hình có thể tạo ra được tín hiệu sin thì theo nguyên lý sẽ tạo được các tín hiệu phức tạp hơn, vì vậy trong bài này mình sẽ xây dựng mô hình GAN để sinh tín hiệu...
Xin chào mọi người, đợt dịch này cuối tuần rảnh rỗi không đi chơi đâu được nên mình học về cách triển khai mô hình deep learning bằng ba công cụ: torchserve, streamlit và docker. Và mình có áp dụng những kiến thức mình học được để làm một project nho nhỏ để chia sẻ cho mọi người. Đó là tool Nhận diện chữ tiếng Việt qua ảnh. Các bạn có thể tải toàn bộ mã nguồn ở đây nhé..
. <img src="https...
Chào mọi người, trong bài viết này mình sẽ cùng mọi người tìm hiểu một số thuật toán tìm kiếm được sử dụng trong Natural Language Generation.
I. Tổng quan về Natural Language Generation Natural Language Generation là gì? Natural Language Generation(NLG) là việc sử dụng AI để tạo ra các câu chuyện viết hoặc nói từ một tập dữ liệu. NLG liên quan đến tương tác giữa người với máy và máy với người,...
[IMG]
Glove embedding
Trong xử lý ngôn ngữ tự nhiên, có rất nhiều kỹ thuật có thể ánh xạ từ ngữ sang vector số thực, còn được gọi là embedding từ (word embedding). Có rất nhiều kỹ thuật, đơn giản nhất là sử dụng vector one-hot để đại diện cho từ. Tuy nhiên, kỹ thuật này lại không biểu diễn được độ tương quan giữa các từ.
Một kỹ thuật tốt hơn là Word2Vec, nó biểu diễn 1 từ bằng 1 vector có độ dài c...
Toàn bộ phần mã nguồn của bài toán các bạn có thể tham khảo github của mình nhé: VietnameseOcrCorrection
- Mục đích bài toán. Bài toán sửa lỗi tiếng Việt hiện tại đã được nhiều ông lớn trong làng công nghệ sử dụng trong nhiều ứng dụng quen thuộc mà các bạn có thể đã từng dùng như: tính năng phát hiện lỗi sai trong Google Docx hay Mircosoft Word , .... Vậy công nghệ này sẽ giúp ích như thế nào ...
Cơ chế Attention là gì?
Trong lĩnh vực ML, DL, bài toán dịch máy với mạng neural (Neural Machine Translation) chắc hẳn không còn xa lạ gì với mọi người. Ý tưởng đơn giản nhất để giải quyết bài toán này là sử dụng mô hình Sequence to Sequence, với 2 khối encoder và decoder, mỗi khối chỉ sử dụng lớp embedding và mạng hồi tiếp mà thôi. Với mỗi chuỗi nguồn đầu vào input, chúng được mã hóa bởi mạng...